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Abstract - To protect cables from damage by too high 
temperatures, classically fuses are used. Those often lead to 
over-dimensioned cables due to their melting behaviour or 
simple tripping strategies. Therefore, smart fuses can be 
advantageous. Here, a more powerful control circuit can 
estimate the cable temperature and operate as switch, when the 
temperature exceeds a given limit. The control circuit needs to 
run a thermal simulation of the cable to be protected. Critical 
temperatures can be detected this way. Thermal cable models 
can be very complex and computationally intensive, especially 
when numeric methods are used. In this contribution, a new 
analytic approach for the transient axial temperature 
distribution along a single cable is presented. Using this solution, 
a significant reduction of the time needed for calculation is 
achieved. 
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Nomenclature 

𝐶′, 𝐶c
′, 𝐶i

′  
thermal per unit length capacitances 
(total, conductor, isolation) (J Km⁄ ) 

𝑐c, 𝑐i  
specific heat capacities (conductor, 
isolation) (J/m3K) 

𝑔  gravity of the earth (m/s2) 
𝐺′  parameter for condensed model (W Km⁄ ) 
𝐼  electrical current (A) 
𝐿  cable length (m) 
𝑙α  characteristic length (m) 

𝑀  
parameter Gaver-Stehfest-algorithm 
(dimensionless) 

Nu  Nusselt number (dimensionless) 
𝑃e

′  per unit length electrical losses (W m⁄ ) 
Pr  Prandtl number (dimensionless) 
Ra  Rayleigh number (dimensionless) 
𝑟c, 𝑟i  radius (conductor, isolation) (m) 

𝑅L
′   

axial thermal resistance per unit length 
(K Wm⁄ ) 

𝑅ref
′   

electric per unit length resistance at the 
temperature 𝑇ref (Ω m⁄ ) 

𝑅α
′   

thermal per unit length resistance for 
convection and radiation (Km W⁄ ) 

𝑅λ
′   

thermal per unit length resistance for heat 
flow through isolation (Km W⁄ ) 

𝑠  Laplace variable (1 s⁄ ) 
𝑡  time (s) 
𝑇  conductor temperature (° C) 
𝑇0  cable temperature at 𝑡 = 0 s (° C) 
𝑇1, 𝑇2  temperatures at cable ends (° C) 
𝑇E, 𝑇E,K  ambient air temperature (° C, K) 
𝑇m  mean temperature (° C) 
𝑇ref  reference temperature for 𝑅ref

′  (° C) 
𝑇s, 𝑇s,K  surface temperature (° C, K) 

𝑧  axial direction (m) 

𝛼k, 𝛼r  
heat transfer coefficients (convection, 
radiation) (W Km2⁄ ) 

𝛼T  linear temperature coefficient (1/K) 
𝛽  coefficient of thermal expansion (1 K⁄ ) 
𝜀  emissivity isolation (dimensionless) 

𝜆air, 𝜆c, 𝜆i  
thermal conductivities (air, conductor, 
isolation) (W/Km) 

𝜈  kinematic viscosity (m2 s⁄ ) 
𝜌  electrical resistivity at 𝑇ref (Ωm)  
𝜎  Stefan-Boltzmann constant (W m2K4⁄ ) 
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1. Introduction 
Driven by the current developments concerning 

electric mobility and an increasing number of electronic 
devices, higher voltages and currents appear in 
automobiles. Cables to carry the high currents need to be 
chosen carefully: On the one hand, the smaller the 
diameter of the cables is, the lower the weight and the 
higher the flexibility is. On the other hand, a smaller 
diameter of the cable leads to a higher resulting 
temperature. The temperature highly affects the aging of 
the cable isolation and therefore the lifetime. To avoid 
temperature damages, classical melting fuses can be 
used. Those trigger dependent on the temperature of the 
melting wire and cannot consider the actual condition of 
the cable that should be protected. Worst-case 
conditions have to be assumed, which might cause over-
dimensioned cables. In addition, melting fuses have to be 
exchanged after triggering once, so all of the fuses have 
to be accessible easily. To avoid these disadvantages, 
electronic and smart fuses were developed, requiring 
methods for overload detection. One approach is based 
on a model of the cable, which is used to calculate the 
cable temperature with the measured current as input. If 
the calculated cable temperature rises above a critical 
temperature, the fuse interrupts the current with a 
semiconductor or relay [1]. Therefore, precise and fast 
models to approximate the temperature in the cable are 
needed.  

The simplest approach is to model only the radial 
heat flow (see e.g. [2]–[6]) and neglect the axial heat flow 
along the cable. For special set-ups, analytic formulas for 
the temperature can be found (e.g. [7], [8]). Only 
mentioning the radial heat flow is equivalent to 
describing an infinitely long cable. Therefore, the real 
temperature in the middle of the cable is only calculated 
correctly, if the beginning and the end of the cable do not 
influence the temperature in the middle of the cable. This 
means that sufficiently long cables in a uniform 
environment have to be assumed. Unlike, in real 
structures, often the temperatures at the beginning and 
the end of the cable are relevant for the maximal 
temperature along the cable. That is why the axial heat 
flow has to be considered to find realistic temperatures.  

Considering the axial heat flow along the cable 
leads to a significantly higher complexity of the resulting 
problem. That is why in previous works, axial models 
based on numeric calculation methods were derived. For 
example, in [9], equivalent circuits are used. The axial 
model is build up by connecting several instances of the 
radial model in series via axial heat transfer resistances 

in MATLAB/Simscape. So, the time-dependent 
calculation of the temperature distribution along the line 
causes a high calculation effort. In [10], differential 
equations for the stationary case are derived and solved 
using the finite element method. In [11], a model of a 
power cable is build up using a 3D finite element method. 
This is used to evaluate the temperature of the cable. 
Another approach found in literature as e.g. [12] is to 
model the axial heat flux along the cable, but to take into 
account only the stationary case without modelling of 
the time dependency. As transient information is highly 
relevant for real applications, neglecting the time 
dependency can severely limit the practical applicability 
of those models. 

In the electrical transmission line theory, axial 
voltage and current distributions along cables are 
calculated as solutions of a differential equation, which 
is derived from an equivalent circuit for an infinitesimal 
short cable [13]. Analogous, in this paper, thermoelectric 
equivalent circuits for an infinitesimal short segment of 
a cable are used to derive a differential equation for the 
temperature along the cable. This approach is only valid 
for special conditions as for example a constant ambient 
temperature and a constant current through the cable. In 
contrast to the aforementioned numeric 
approximations, in this contribution, a new analytic 
approximation for the solution of the resulting partial 
differential equation for the thermal modelling of a 
single air-cooled cable is presented. Unlike previous 
models, the temperature at each position along the cable 
and each point in time can be calculated independently 
from each other, which can reduce the calculation time 
for concrete applications drastically. This model can be 
used in smart fuses, but also for the dimensioning of 
cables. In the following chapter 2, the examined model 
and the analytic solution are presented. In chapter 3, 
some details concerning the implementation are given. 
The numeric reference solution is introduced in chapter 
4, before results are shown in chapter 5. 

 

2. Analytic Solution for a Single Cable 
In this chapter, the theoretical approaches for a 

new analytic solution are shown. After a brief summary 
about the modelled configuration and the presentation 
of the thermoelectric model, the different solutions are 
derived. 

 
2. 1. Examined Model of a Single Cable 

Figure 1 shows the modelled cable of length 𝐿, 
oriented in 𝑧-direction. It consists of a solid copper 
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conductor with radius 𝑟c surrounded by an isolation 
(PVC). The outer radius of the cable is 𝑟i. An electric 
current 𝐼 flows through the cable, which is terminated 
with panels with infinite heat capacity and temperature 
𝑇1 respectively 𝑇2 at the beginning respectively end. The 
ambient air has the temperature 𝑇E. The coordinate 𝑧 is 
zero at the left termination.  

 

 
Figure 1. Modelled cable in the assumed environment. 

 
2. 2. Fundamental Thermoelectric Model for a Single 
Transmission Cable 

The cable is modelled with a thermoelectric 
equivalent circuit: Analogous to the electric domain, an 
equivalent circuit of an infinitesimal short cable segment 
is derived as shown in Figure 2(a). Analogous to the 
electric transmission line theory [13], the differential 
equation is found by consideration of an infinitesimal 
short cable segment. The cable parameters are all given 
related to length as per unit length parameters (pul) and 
marked with an upstroke, e.g. 𝑃e

′.  
 

 
Figure 2. Thermoelectric equivalent model to describe the 
heat flow through the cable. (a) Detailed model to describe 

physical effects. (b) Condensed model. 

 
To reduce the complexity of the model, some 

assumptions are made in the derivation of the shown 
equivalent circuit: At first, the thermal conductivity of 
the conductor is assumed to be high, so in radial 
direction, the temperature gradient along the conductor 

is neglected and only the isolation temperature gradient 
remains. The isolation has a lower thermal conductivity. 
This is also why in axial direction, the influence of the 
isolation is neglected, so only the influence of the 
conductor remains. The following descriptions 
concerning the parameters are based on [9]. 

An overview of the calculation formulas for the 
parameters is given in Table 1. The heat that is injected 
into the system via the source 𝑃e

′ represents the pul 
electrical losses because of the electrical current 𝐼 in the 
cable. The linear temperature coefficient for the 
conductor conductivity is 𝛼T. 𝑅ref

′  means the electric pul 
resistance at the temperature 𝑇ref and 𝑇 means the 
conductor temperature. The thermal pul capacitances 
for the conductor 𝐶c

′ and the isolation 𝐶i
′ depend on the 

specific heat capacities per volume 𝑐c and 𝑐i. The thermal 
pul resistance 𝑅λ

′  describes the thermal heat flow 
through the isolation with the thermal conductivity of 
the isolation 𝜆i. The thermal pul resistance 𝑅α

′  is used to 
model the heat transfer from the isolation to the 
surrounding air with convection and radiation. The heat 
transfer coefficient 𝛼r describes the radiation. The 
temperatures 𝑇s,K and 𝑇E,K are the temperature of the 

surface of the isolation respectively the environmental 
temperature in Kelvin, 𝜀 is the emissivity of the isolation 
material and 𝜎 ≈ 5.6704 ⋅ 10−8  W m2K4⁄  is the Stefan-
Boltzmann constant. As in [9], the emissivity is assumed 
to be 0.95 in this paper. The heat transfer coefficient 𝛼k 
describes free convection in air. 𝜆Air means the thermal 
conductivity of air and 𝑙α = 2𝑟i the characteristic length 
of the structure. The Nusselt number Nu [14] is 
depending on the structure: For a cylinder it is calculated 
using the Rayleigh number Ra = Gr ⋅ Pr, the Grashof 
number Gr and the Prandtl number Pr, with the gravity 
of the earth 𝑔 ≈ 9.81 m/s2, the coefficient of thermal 
expansion 𝛽 = 1 𝑇E,K⁄  and the kinematic viscosity 𝜈 [15]. 

The parameters 𝜆Air, 𝜈 and Pr can be determined from 
tables as for example given in [14] using the mean 
temperature 𝑇m = 0.5(𝑇s + 𝑇E), so they depend on the 
actual surface temperature of the cable 𝑇s. In this paper, 
a spline interpolation between the values given in [14] is 
used. All of the aforementioned parameters describe the 
radial heat flow in the cable. For the axial behaviour, the 
axial thermal resistance per length 𝑅L

′  is introduced with 
the thermal conductivity of the conductor 𝜆c. For the 
calculations, the model is condensed to the form 
presented in Figure 2(b). The new parameters 𝐶′ and 𝐺′ 
are calculated from the already presented parameters.  

  

𝐼 
𝑟c 𝑟i 

𝐿 

𝑇1 𝑇2 
𝑇E 

conductor (copper) 

isolation (PVC) 
𝑧 

𝑃e
′ 

𝑃e
′ 

𝐶c
′ 

𝐶′ 

𝐶i
′ 

𝑅λ
′  

𝑅α
′  

𝐺′ 

𝑇E 

𝑇E 

𝑅L
′  

𝑅L
′  

(a) 

(b) 

cable 

cable 

reference 

reference 
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Table 1. Overview of the calculation rules for the parameters. 

Meaning Calculation rule 

Electrical losses 𝑃e
′ = 𝐼2𝑅ref

′ (1 + 𝛼T(𝑇 − 𝑇ref)) 

Heat transfer 
(isolation to 

surrounding air) 
𝑅α

′ =
1

(𝛼k + 𝛼r)2𝜋𝑟i
 

Radiation 𝛼r = 𝜀𝜎(𝑇s,K + 𝑇E,K)(𝑇s,K
2 + 𝑇E,K

2 ) 

Nusselt number Nu =

(

 
 
 
0,600 +

0,387 ⋅ Ra
1

6

(1 + (
0,559

Pr
)

9

16
)

8

27

)

 
 
 

2

 

Grashof number Gr = 𝑔 ⋅ 𝑙α
3 ⋅ 𝛽 ⋅ |𝑇s − 𝑇E| 𝜈2⁄  

Free convection  𝛼k = Nu ⋅ 𝜆Air 𝑙α⁄  

Thermal capacitance 
(c: conductor,  

i: isolation) 

𝐶c
′ = 𝑐c𝜋𝑟c

2 
𝐶i

′ = 𝑐i𝜋(𝑟i
2 − 𝑟c

2) 

Thermal heat 
conduction through 

isolation 
𝑅λ

′ =
ln (

𝑟i

𝑟c
)

2𝜋𝜆i

 

Axial thermal 
resistance 

𝑅L
′ =

1

𝜆c ⋅ 𝜋 ⋅ 𝑟c
2
 

Parameters for 
condensed model 

𝐶′ = 𝐶c
′ + 𝐶i

′ 

𝐺′ = 1 (𝑅λ
′ + 𝑅α

′ )⁄  

 
In the next step, the differential equation is 

deduced from the circuit model. Like in the electric 
domain, Kirchhoff’s laws are evaluated. Rearranging of 
the resulting formulas leads to the inhomogeneous 
partial differential equation, which describes the 
temperature distribution along the cable: 

 
1

𝑅L
′

d2𝑇

d𝑧2 
− 𝐺′𝑇 − 𝐶′

d𝑇

d𝑡
= 𝑃e

′ − 𝐺′𝑇E. (1) 

 
The elements 𝐺′ and 𝑃e

′ of the circuit, that lead to 
the parameters of the differential equation, depend on 
the cable temperature. A nonlinear differential equation 
results. This dependency is very complicated, so for this 
moment it is neglected. Subsequently, the dependency is 
included by finding a self-consistent solution using an 
iterative approach. 
 
2. 3. Stationary Solution 

At first, a stationary solution of the differential 
equation (1) is presented. In the stationary case, there is 
no variation of the temperature along the time. In the 
reduced differential equation, only the variable 𝑧 
remains. The solution includes a homogenous and a 
particulate term. The constant factors 𝑇h1 and 𝑇h2 follow 

from the initial conditions 𝑇(0) = 𝑇1 and 𝑇(𝐿) = 𝑇2 
(temperature at the beginning and the end of the cable): 

 

𝑇(𝑧) = 𝑇h1𝑒
√𝑅L

′𝐺′𝑧
+ 𝑇h2𝑒

−√𝑅L
′𝐺′𝑧

+ 𝑇p, 

𝑇p = 𝑇E −
𝑃e

′

𝐺′
,      𝑇h1 = 𝑇1 − 𝑇p − 𝑇h2, 

𝑇h2 =
𝑇2 − 𝑇p − (𝑇1 − 𝑇p)𝑒

√𝑅L
′𝐺′𝐿

𝑒
−√𝑅L

′𝐺′𝐿
− 𝑒

√𝑅L
′𝐺′𝐿

. 

(2) 

 

2. 4. Complete Solution for as Single Cable 
The differential equation (1) is now solved using 

the Laplace transform. The temperature of the conductor 

at 𝑡 = 0 s is 𝑇(𝑧, 0) = 𝑇0 = const.. The temperature at 
the beginning of the conductor is 𝑇(0, 𝑡) = 𝑇1 and at the 
end of the conductor 𝑇(𝐿, 𝑡) = 𝑇2 for all times. The 
Laplace transform yields 

 
1

𝑅L
′

d2𝑇

d𝑧2 
− (𝐺′ + 𝑠𝐶′)𝑇 = −

𝑇p𝐺
′

𝑠
− 𝐶′𝑇0, 

 𝑇(0, 𝑠) =
𝑇1
𝑠

,          𝑇(𝐿, 𝑠) =
𝑇2

𝑠
. 

(3) 

 
The remaining differential equation only depends 

on the variable 𝑧 and can be solved as before. The factors 
𝐴1 and 𝐴2 are again found using the remaining boundary 
conditions. 

 

𝑇(𝑧, 𝑠) = 𝐴1 ⋅ 𝑒𝑧�̃� + 𝐴2 ⋅ 𝑒−𝑧�̃� + 𝑇t,p,  

𝑇t,p =
𝐺′𝑇E + 𝑠𝐶′𝑇0 − 𝑃e

′

𝑠(𝐺′ + 𝑠𝐶′)
,   �̃� = √𝑅L

′ (𝐺′ + 𝐶′𝑠), 

𝐴1 =
𝑇1 − 𝑠𝑇t,p

𝑠(1 + 𝑒𝐿�̃�)
+

(𝑇1 − 𝑇2)𝑒
−𝐿�̃�

𝑠(𝑒−2𝐿�̃� − 1)
, 

𝐴2 =
𝑇2 − 𝑠𝑇t,p

𝑠(𝑒−𝐿�̃� + 1)
+

𝑇2 − 𝑇1

𝑠(𝑒−2𝐿�̃� − 1)
. 

(4) 

 

In the next step, the solution in the Laplace domain 
has to be transformed back into the time domain. As 
numeric inverse Laplace transformation algorithms 
should be avoided, an analytic approach has to be found. 
There are different terms in the Laplace solution, of 
which not all have a known transformation back into the 
time domain: The terms in which the exponential 
function appears in the numerator as well as in the 
denominator lead to complications. That is why 𝐴1(𝑠) 
and 𝐴2(𝑠) are approximated in the next step: By 
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inserting typical values, it is shown, that 𝑒−𝐿�̃� can be 
neglected against ±1. This leads to the reduced form for 
the factors:  

 

𝐴2 ≈
𝑇1

𝑠
− 𝑇t,p,           𝐴1 ≈ (

𝑇2

𝑠
− 𝑇t,p) 𝑒−𝐿�̃�. (5) 

 
The approximated result in the Laplace domain 

can be transformed back into the time domain. The 
complete process of the solution including the result in 
the time domain is presented in Figure 3. 

 

 
Figure 3. Process to find the approximation of the solution of 

the partial differential equation. 

 
2. 4. 1. Infinitely Long Cable 

For an infinitely long cable, only the particulate 
term remains, which can be transformed back into the 
time domain easily. As expected, the 𝑧-dependency 
vanishes: 

 

𝑇inf = 𝑇p (1 − 𝑒
−

𝐺′

𝐶′𝑡) + 𝑇0𝑒
−

𝐺′

𝐶′𝑡. (6) 

 
2. 4. 2. Semi-infinite Cable 

In this section, a cable is modelled, which starts at 

𝑧 = 0 m and is of infinite length. Because of the infinite 
length of the cable, the factor 𝐴1(𝑠) has to vanish: 
𝐴1(𝑠) = 0. The other factor is calculated from the 
remaining boundary condition 𝑇(0, 𝑡) = 𝑇1 = const.. The 
inverse Laplace transform leads to the solution in the 
time domain: 

 

𝑇semi−inf(𝑧, 𝑡) = 𝑇p +
𝑇1 − 𝑇p

2

⋅ {[1 − erf (
𝑧√𝑅L

′𝐶′ − 2√𝐺′𝑡

2√𝐶′√𝑡
)] 𝑒

−𝑧√𝑅L
′𝐺′

+ [1 − erf (
𝑧√𝑅L

′𝐶′ + 2√𝐺′𝑡

2√𝐶′√𝑡
)] 𝑒

𝑧√𝑅L
′𝐺′

}

+ erf (
𝑧√𝑅L

′𝐶′

2√𝑡
)𝑒

−
𝐺′

𝐶′𝑡 (𝑇0 − 𝑇p). 

(7) 

 

3. Implementation of the Developed Solutions 
In all of the before presented solutions, constant 

values for the parameters in the equivalent circuit are 
assumed. As one can see from the calculation rules 
presented in section 2. 2., the parameters depend on the 
temperatures of the conductor and the surface of the 
isolation. The surface temperature of the isolation 
depends on the temperature of the conductor and again 
of the parameters. The temperature of the conductor is 
calculated using the parameters. Those relations are 
shown in Figure 4(a). All in all, a self-consistent problem 
results. That is why an iterative approach is used here 
(see Figure 4(b)): Starting with an estimated 
temperature for the conductor and typical values for the 
parameters, the corresponding temperature of the 
surface of the isolation is calculated. Using this, the 
parameters are recalculated. In the last step of the first 
iteration, the conductor temperature is calculated. Using 
this, the surface temperature is recalculated and so on. 
This process is repeated a few times to find a solution, in 
which parameters and the mentioned temperatures fit 
together. After a few iterations (maximal 10 for the 
examined cases) only minor corrections (≪ 1 K) result 
from further iterations. Generally, for each time and 
position along the cable, the iterations have to be done 
again. This means quite some effort, if a very dense mesh 

PDE with boundary conditions 

Laplace transform of PDE with boundary conditions  

Solution of the PDE in the Laplace domain  

Approximation of prefactors:  𝑒𝐿𝑠  ≫ 1 

Approximation of the solution in the time domain: 

𝑇(𝑧, 𝑡) ≈ (𝑇0 − 𝑇p)𝑒
−

𝐺′

𝐶′𝑡  erf  
𝐿 − 𝑧

2
 
𝑅L

′𝐶′

𝑡
 

+ erf  
𝑧

2
 
𝑅L

′𝐶′

𝑡
 − 1 −

𝑇2 − 𝑇p

2

⋅  [erf (
(𝐿 − 𝑧)√𝑅L

′𝐶′ − 2𝑡√𝐺′

2√𝐶′𝑡
) − 1] 𝑒

(𝑧−𝐿)√𝑅L
′𝐺′

+ [erf (
(𝐿 − 𝑧)√𝑅L

′𝐶′ + 2𝑡√𝐺′

2√𝐶′𝑡
) − 1] 𝑒

(𝐿−𝑧)√𝑅L
′𝐺′

 

−
𝑇1 − 𝑇p

2
 [erf (

𝑧√𝑅L
′𝐶′ − 2𝑡√𝐺′

2√𝐶′𝑡
) − 1] 𝑒

−𝑧√𝑅L
′𝐺′

+ [erf (
𝑧√𝑅L

′𝐶′ + 2𝑡√𝐺′

2√𝐶′𝑡
) − 1] 𝑒

𝑧√𝑅L
′𝐺′

 + 𝑇p, 

 

𝑇s = 𝑇 −
𝑅λ

′ (𝑇 − 𝑇E)

(𝑅λ
′ + 𝑅α

′ )
. 
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of time and space points should be calculated. But there 
is a huge advantage: The temperature at each point in 
time and space is calculated independently from each 
other point, which means, that neither the whole cable 
has to be calculated if only a special point is of interest 
nor earlier time steps need to be calculated if only a later 
point is relevant. Compared to the numeric calculation of 
the solution of the differential equation this leads to an 
enormous reduction of the computation time. 

In the beginning, the stationary solution is 
calculated. For the calculation of the infinite cable, the 
stationary solution in the middle of the cable is used as 
first guess for the temperature of the conductor. The 
complete solution (finite cable) as well as the semi-
infinite solution depend on the time and the position 
along the cable. For the semi-infinite solution, the 
stationary temperature is used as first guess for the 
conductor temperature of the first half of the cable, for 
the second half the stationary solution in the middle of 
the cable is used. For the solution for the finite cable the 
stationary solution at the specific point of the cable is 
used. For each desired time the iterations are repeated 
until convergence is reached. As mentioned before, for 
the examined cases maximal 10 iterations are necessary. 
The complete process is summed up in Figure 4(c). 

 

 
Figure 4. (a) Dependency between the temperature of the 

conductor 𝑇 and the surface 𝑇s of the cable and the 
parameters 𝑃e

′ and 𝐺′. (b) Scheme of the iterations to include 
nonlinear parameters. (c) Usage of the stationary solution as 

first guess for other calculations. 
 

4. Numeric Reference Solution of the Partial 
Differential Equation 

The numeric solution of the differential equation 
presented in equation (1) is used to validate the analytic 
approximation. The numeric solution is implemented 
applying the Crank-Nicholson method and three 
iteration steps (see previous chapter), so these iteration 
steps consider the nonlinear terms. This solution will be 
regarded as correct and used as reference solution for 
the following comparisons. A discretization of 100 steps 
for the 𝑧-direction and 1001 steps for the time is used. 

 
5. Results 

The presented solutions are examined for the 
cable presented in Figure 1: A current of 70 A flows 
through a 6 mm2-cable. Therefore, the cable has the 

conductor radius  𝑟c = 1.382 mm. The total radius with 

isolation is 𝑟i = 2 mm. The examined cable has a length 

of 𝐿 = 1 m. The surrounding air has the temperature  

𝑇E = 25 °C, which is as well the temperature of the whole 

cable at 𝑡 = 0 s (𝑇0) and of the beginning (𝑇1) and the end 
(𝑇2) of the cable for all times. The conductor consists of 
solid copper and therefore has the specific heat capacity 
𝑐c = 3.4 ⋅ 106 J/m3K , the thermal conductivity  

𝜆c = 386 W/Km and a resistivity at 20 °C of  
𝜌 = 1.86 ⋅ 10−8 Ωm. The linear temperature coefficient 
is 𝛼T = 3.93 ⋅ 10−3 1/K. The isolation is made of PVC 
with the specific heat capacity 𝑐i = 2.245 ⋅ 106 J/m3K, 
the thermal conductivity 𝜆i = 0.21 W/Km and the 
emissivity 𝜀 = 0.95. The analytic approximation for the 
temperature along the finite cable is compared to the 
numeric inversion of the original solution in the Laplace 
domain to see if the approximation causes errors. The 
numeric inversion of the Laplace transform is done using 
the Gaver-Stehfest-algorithm [16] with the parameter  
𝑀 = 5. The results are shown in Figure 5 and differ in the 
fourth decimal digit. This good agreement between both 
solutions confirms that the approximation is quite exact 
for this exemplary setup. Therefore, the performed 
approximation does not cause relevant deviations here.  

In Figure 6, the calculated results are compared to 
the direct numeric solution of the differential equation as 
presented in chapter 4. In Figure 6(a), the results for the 
maximum of the conductor temperature over time are 
shown. The temperature is taken at the middle of the 
cable. All analytic solutions show a similar development. 
For long times, the infinite and semi-infinite solutions 
show slightly higher values than the finite solution. 

(a) (b) 

(c) 

Initialization: 𝑇, 𝐺′ 

Calculation of surface temperature 𝑇s 

Calculation of parameters 𝐺′ and 𝑃e
′ 

Calculation of conductor temperature 𝑇 

  

 

𝑇 𝑇s 

𝑃e
′, 𝐺′ 

Calculation of stationary solution (stat.) 

Infinite cable 
First guess: 

Middle temp. of 
stat. 

Semi-infinite 
cable  

First guess:  
First half: stat.  

Second half: Middle 
temp. of stat. 

Finite cable  
First guess: stat. 



 64 

 
Figure 5. Comparison of the solution using the numeric 

inverse Laplace transform and of the approximation with 
analytic solution. (a) Maximum conductor temperatures 

along time. (b) Conductor temperature at 𝑡 = 500 s. 

 

 
Figure 6. (a) Comparison of the maximum conductor 
temperatures along time. (b) Calculated conductor 

temperature for 𝑡 = 100 s, 𝑡 = 500 s, 𝑡 = 1000 s. 

This is because of the length of the cable: For a 
longer cable, the values get closer together. The numeric 
solution shows a different behaviour in the transient 
state: Up to approximately 2 K lower temperatures are 
predicted here. As mentioned before, the approximation 
in the Laplace domain does not cause those deviations. 
In fact, the deviations result because in the numeric 
solution, the results of the iterations propagate to the 
next time step. As mentioned before, in the analytic 
solution, the calculation at each position in time and 
location is independent from each other position. 
Another function is used for each step and there is no 
coupling between the different positions. In the used 
functions, it is implicitly assumed, that all parameters are 
constant. That is why especially for the transient case 
minor deviations appear. Nevertheless, the predicted 
temperature only differs little from the numerically 
computed temperature and therefore might be used as a 
good, very fast approximation. In Figure 6(b), the 
calculated temperature along the cable is shown for 
different time steps. For long times, the solutions get 
closer together and meet the stationary solution. In the 
transient area, the numeric and analytic approaches 
slightly deviate from each other mainly in the middle of 
the cable. 
 

6. Conclusion 
In this contribution, a new analytic approach for 

the transient axial temperature distribution along a 
single cable with constant ambient temperature and 
fixed temperatures at the beginning and the end of the 
cable is presented. The cable is assumed to have a 

constant temperature at the beginning 𝑡 = 0 s. Using an 
iterative approach, non-linear material parameters can 
be considered. Compared to known numeric solutions 
for this configuration, a significant reduction of the 
calculation time is achieved. The solution is very close to 
the numeric solution, so it can be used for example in 
smart fuses. Furthermore, solutions for cables of infinite 
length are presented. The usage of the semi-infinite cable 
reduces the effort of the computation even further and 
might be used when accuracy can be lower and 
computational resources are reduced. 
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