Comparative Study of Transfer Impedance (Z_T) Measurement Methods and Simulation Models to Analyze Shielding Behaviour of High Voltage Cables in Electric Vehicles

Content

- Introduction
- Measurement methods
- Simulation methods
- Conclusions
Content

- Introduction
 - Motivation
 - Basic Terminology
- Measurement methods
- Simulation methods
- Conclusions
Motivation

Problem Overview

- In Electrical Vehicles (EV) and Hybrid-Electrical Vehicles (HEV)
 - Power drive systems, inverters convert and provide PWM signals at high voltage ($V_{\text{peak-to-peak}} \geq 300V$) to drive the E-motors via HV-cables (shielded power cables)
 - EMI noise signals from these HV-cables may cause malfunction of LV electronics devices, MCUs, vehicular communication networks (LIN, CAN, Flexrays, MOST, etc), AM Radio, etc

- Optimum shielding of the HV-cables and HV-connectors
Motivation

Steps:

■ How to evaluate shielding performance of HV-shielded cables?
 ■ Shielding Effectiveness vs. Transfer Impedance

■ Shielding Effectiveness (SE)
 ■ Is a measure for the not just shielded cable, but also depends on external parameters
 ■ For the same shield, we can get different SE by varying the external parameters
 ■ Good for overall integrated system shielding analysis

■ Transfer Impedance (Z_T)
 ■ Is an intrinsic property of the shield, and doesn’t depend on external parameters
 ■ For the same shield, Z_T is independent of external parameters like termination load, external layouts, etc.
 ■ Good for component level shielding analysis

Main focus of this talk is on Z_T:

■ Predicting Transfer Impedance using simulation and measurement methods
Motivation

Basic Terminology

- Transfer Impedance \(Z_T \)
 - It is defined as:
 \[
 Z_T = \frac{dV_{\text{SHIELD}}}{I_{\text{SHIELD}} \cdot l_{\text{SHIELD}}}
 \]

Measurement method

Based on above formula, various test setup have been proposed (Triaxial Method and Line Injection Method)

Simulation methods

Based on braid parameters, dimensions, \(Z_T \) can be predicted

Based on circuit models
Content

- Introduction
- Measurement methods
 - Existing methods
 - Ground Plate Method (GPM)
 - Capacitive Voltage Probe (CVP) Method
- Simulation methods
- Conclusions
Measurement methods

Existing methods

- Z_T measurement methods
 - Triaxial Method (IEC 62153-4-3)
 - Complex structure for variable sizes and connectors
 - Variable size of tubes require for different sizes and shapes, specially for connectors
 - Line Injection Method (LIM) (IEC 62153-4-6)
 - For non-symmetrical cables and connector assemblies, different positioning of the injection wires can cause inaccuracy in measured results
Use of alternative methods to measure Z_T

- For shielding analysis of HV-cable-connector systems, it should be
 - Flexible to measure Z_T of non-symmetrical samples and large connectors
 - With maximum accuracy and better repeatability/reproducibility

- To overcome these issues in HV-cable-connector analysis, following methods are used:
 - Ground Plate Method (GPM)
 - Overcomes the limitation of the existing methods
 - Flexible to measure Z_T of non-symmetrical samples and large connectors
 - Ability to correlate with Antenna measurements with least variation in test setup
 - Capacitive Voltage Probe (CVP) measurement
 - Direct measurement of Voltage over the shield
 - Transfer Impedance can be approximated using both voltage and input current
 - Ability to correlate with Antenna measurements with least variation in test setup
Measurement methods

Ground Plate Method (GPM)

- Circuit schematics for all three measurement setups are similar
 - Source circuits are almost same
 - Receiver circuits are different (physically)

- Same GPM test setup for both HV-Cable and HV-Cable-Connector system

\[
Z_T = \frac{dV_{\text{SHIELD}}}{I_{\text{SHIELD}} \cdot l_{\text{SHIELD}}}
\]

Source-circuit

\[R_{1F}\]

\[U_{1N}\]

\[R_{1P}\]

\[U_{2,FE}\]

\[R_{2P}\]

\[R_{2N}\]

Cylinder (Triaxial-Method)/ Injection (Parallel) lines (Line Injection Method)/ Copper-plate (Ground-Plate Method)
Measurement methods

Ground Plate Method (GPM)
- **Test setup**

Line Injection Method (Far-end configuration)

Triaxial Method

Ground Plate Method (Far-end configuration)
- **Alternative method for measuring Transfer Impedance Z_T**

\[
Z_T = \frac{V_{\text{SHIELD}}}{I_{\text{INNER}}l_{\text{DUT}}}
\]

- **HV-Cable only**
- **HV-Cable-Connector system**

- **Inverted Connector-box**

- **Ground Plate Method (GPM)**

- **$h = 65$ mm**
- **l_{DUT}**
- **$l_{\text{box}} = 100$ mm**

Comparative Study of Transfer Impedance (ZT) Measurement Methods and Simulation models to Analyze Shielding Behaviour of High Voltage Cables in Electric Vehicles
Comparative Study of Transfer Impedance (ZT) Measurement Methods and Simulation models to Analyze Shielding Behaviour of High Voltage Cables in Electric Vehicles
Ground Plate Method (GPM)

Compared to the reference cable, the ZT (transfer impedance) for the connectors shows that:

- **ZT-Connector-A**
- **ZT-Connector-B**
- **ZT-Dummy-box**
- **ZT-Cable Ref.**

Lesser contact points improve shielding

Measurement methods

Ground Plate Method (GPM)

Comparative Study of Transfer Impedance (ZT) Measurement Methods and Simulation models to Analyze Shielding Behaviour of High Voltage Cables in Electric Vehicles
Capacitive Voltage Probe (CVP) test

- Using basic definition of Z_T

\[
Z_T = \frac{dV_{\text{SHIELD}}}{I_{\text{SHIELD}} \cdot l_{\text{SHIELD}}}
\]

\[
V_{\text{CVP}} \rightarrow V_{\text{SHIELD}}
\]

\[
I_{\text{SOURCE}} = \frac{V_{\text{SOURCE}}}{Z_{\text{IN}} - 50\Omega}
\]

For unknown input impedance/mismatched system, it can be measured using reflection measurements using NWA.

Contacts are assumed to be perfect $R=0\Omega$.

Longer DUT length will ensure better R_{DC} measurements.
Measurement methods

Comparative Study of Transfer Impedance (Z_T) Measurement Methods and Simulation models to Analyze Shielding Behaviour of High Voltage Cables in Electric Vehicles

Capacitive Voltage Probe (CVP) test

CVP doesn’t require soldering matched terminations in complex ways, but has lesser measurable Z_T

RG58 (with shield-dia ‘D_0’= 4.4mm; braid thickness ‘d’=0.15 mm; No. of braid filaments ‘n’= 5; No. of carriers ‘N’=24; Weave angle=21
Comparative Study of Transfer Impedance (ZT) Measurement Methods and Simulation models to Analyze Shielding Behaviour of High Voltage Cables in Electric Vehicles

Measurement methods

Capacitive Voltage Probe (CVP) test

Semi-rigid cable Z_T using CVP

<table>
<thead>
<tr>
<th>Frequency [Hz]</th>
<th>Z_T [mOhm/m]</th>
</tr>
</thead>
<tbody>
<tr>
<td>10^4</td>
<td>10^{-2}</td>
</tr>
<tr>
<td>10^5</td>
<td>10^{-1}</td>
</tr>
<tr>
<td>10^6</td>
<td>10^0</td>
</tr>
</tbody>
</table>

Benefit:

For semi-rigid cables, very good shielded cables CVP measures directly Z_T.

\[
Z_{T-SIM-RG-402} = R_{DC} \frac{(1 + j \Delta \delta)}{\sinh((1 + j \Delta \delta))}
\]
Content

- Introduction
- Measurement methods
- Simulation methods
 - Analytical models
 - Circuit models
- Conclusions
Simulation methods

Analytical Model

- Using analytical model (Demoulin model) for Z_T

\[
Z_T = R_0 \frac{(1+j)\Delta/\delta}{\sinh \left((1+j)\Delta/\delta \right)} + k_{CABLE} \sqrt{\omega e} + j^4 \omega (L_{HOLE} - L_{BRAID});
\]

Shielded cable Z_T model description vs. frequency

Simulation methods

- Analytical Model

Braid parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diameter of the braid</td>
<td>D_0</td>
</tr>
<tr>
<td>Diameter of single braid wire</td>
<td>d</td>
</tr>
<tr>
<td>Number of wires in carrier</td>
<td>n</td>
</tr>
<tr>
<td>Number of carriers</td>
<td>N</td>
</tr>
<tr>
<td>Weave angle</td>
<td>Ψ</td>
</tr>
<tr>
<td>Conductivity</td>
<td>σ</td>
</tr>
</tbody>
</table>

Comparative Study of Transfer Impedance (Z_T) Measurement Methods and Simulation models to Analyze Shielding Behaviour of High Voltage Cables in Electric Vehicles
Simulation methods

Analytical Model

- How Z_T can be improved based on geometrical parameters of the shield?

![Diagram showing geometrical parameters of shield]

- **Geometrical parameters of shield**
 - Carrier N
 - Single Braid wire n
 - Aperture
 - Weave Angle Ψ

Simulation methods

- **Analytical Model**
 - How Z_T can be improved based on geometrical parameters of the shield?

![Graph showing effect of braid wire thickness on Z_t]

- **Effect of braid wire thickness on Z_t**
 - $d = 1.0\text{mm}$
 - $d = 1.2\text{mm}$
 - $d = 1.4\text{mm}$
 - $d = 1.6\text{mm}$
 - $d = 1.8\text{mm}$
 - $d = 2.0\text{mm}$

- **Frequency [Hz]**
- **Z_t [mOhm/m]**

- **Break frequency decreases with increasing shield thickness**

Comparative Study of Transfer Impedance (Z_T) Measurement Methods and Simulation models to Analyze Shielding Behaviour of High Voltage Cables in Electric Vehicles

- **Inductance is directly dependent on weave angle. Changing weave angle means changing inductance of the shield thus major impact is at higher frequencies where inductance are dominant in Z_T**

![Graph showing effect of weave angle variation on Z_t]

- **Weave angle**
 - 20
 - 25
 - 30
 - 35
 - 40

- **Frequency [Hz]**
- **Z_t [mOhm/m]**

- **Break frequency decreases with increasing shield thickness**
Simulation methods

Circuit models

- Combination of analytical and circuit models
 - give more realistic prediction of shielding behavior

\[V_T = I_{\text{SHIELD}} Z_{T\text{-model}} \]

- Advantages: Possible to...
 - Add TL models for connecting cables, to predict realistic measurement results
 - Add to other modules, for complex system analysis

![Diagram](image)

Verification of \(Z_T \) model for HV-cable only

\[V_T = I_{\text{SHIELD}} \cdot Z_{T\text{-model}} \]
Content

- Introduction
- Measurement methods
- Simulation methods
- Conclusions
Conclusions

Summary

Overview

- Comparative study of ZT measurement methods and Simulation methods for shielding analysis of HV cables used in EVs

Measurement methods

- Existing methods like Triaxial and Line Injection Methods
- Ground Plate Method (GPM)
- Capacitive Voltage Probe (CVP) Method

Simulation methods

- Analytical models
- Circuit models

Applications:

- Component level shielding analysis of shielded cables and connectors
- Further integration of proposed simulation methods into complex system simulations
- Correlation with Antenna measurements
Thanks for your attention!

M.Sc. Abid Mushtaq
abid.mushtaq@tu-dortmund.de

ACKNOWLEDGMENT
The reported R+D work was carried out within the CATRENE project CA310 EM4EM (Electromagnetic Reliability and Electronic Systems for Electro Mobility). This particular research is supported by the BMBF (Bundesministerium fuer Bildung und Forschung) of the Federal Republic of Germany under grant 16 M3092 I.