Analysis of the Shielding Properties of HV-Cable and HV-Cable-Connector Systems using Transfer Impedance Z_T and Antenna Measurements

Abid Mushtaq, Stephan Frei,
Technische Universität Dortmund
Contents

- Introduction
- Transfer Impedance (Z_T)
- Antenna Measurements
- Correlating measurements
- Analysis of HV-Connector
- Conclusion
Introduction

Motivation

■ Goal
 ■ Electromagnetic shield analysis of HV-Cable and HV-Cable-Connector systems used in EVs and HEVs

■ Overview of research
 ■ Transfer Impedance Z_T analysis (mostly used by Cable and Connector companies)
 ■ Antenna Measurements (used in Automotive EMI tests)
 ■ Both used to analyze shielding performance of cables and connectors
 ■ Investigations to find correlation between Z_T and antenna measurements
 ■ HV-Connector analysis to find critical EMI points

■ Benefit
 ■ Use of correlation between Z_T and Antenna measurements can simplify our measurements
 ■ Predict Antenna measurement results from Z_T measurements or vice versa
 ■ Improvements in the Connector shielding design
Contents

■ Introduction
■ Transfer Impedance (Z_T)
■ Antenna Measurements
■ Correlating measurements
■ Analysis of HV-Connector
■ Conclusion
Transfer Impedance (Z_T)

Ground Plate Method (GPM)

- Existing measurement methods
 - Triaxial Method:
 - Test setup has to be modified for different size of DUT
 - Line Injection Method:
 - Difficult to measure non-symmetrical DUTs

- Alternative Method “Ground Plate Method”
 - Overcomes the limitation of the existing methods
 - Flexible to measure Z_T of non-symmetrical samples and large connectors
 - Ability to correlate with Antenna measurements with least variation in test setup

- In previous investigations, it has been
 - Used for both HV-Cable and HV-Cable-Connector systems
 - Verified by comparing measurement results with both Triaxial Method and Line Injection Method

Abid Mushtaq, Stephan Frei – On-board Systems Laboratory
Analysis of the Shielding Properties of HV-Cable and HV-Cable-Connector Systems using Transfer Impedance Z_T and Antenna Measurements
Transfer Impedance \((Z_T)\)

Ground Plate Method (GPM)
- Circuit schematics for all three measurement setups are similar
 - Source circuits are almost same
 - Receiver circuits are different (physically)
- Same GPM test setup for both HV-Cable and HV-Cable-Connector system

\[
Z_T = \frac{V_{\text{Shield}}}{(I_{\text{inner conductor}} \cdot I_{\text{Coupling}})}
\]

\[
Z_{T^*} = 2x Z_{T,\text{Cable}} + 2x Z_{T,\text{Connector}}
\]

Abid Mushtaq, Stephan Frei – On-board Systems Laboratory
Analysis of the Shielding Properties of HV-Cable and HV-Cable-Connector Systems using Transfer Impedance \(Z_T\) and Antenna Measurements
Transfer Impedance (Z_T)

Z_T measurements using GPM (for two types of connectors)

- Z_T measurements for HV-Cable-Connector sample 1 (left) and 2 (right)
- Reference Z_T measurements for corresponding cables are shown
- Connector has higher $R_{contact}$ and adds extra Inductance
- Compared to sample 1, sample 2 has lower Z_T, thus better shielding performance

Abid Mushtaq, Stephan Frei – On-board Systems Laboratory
Analysis of the Shielding Properties of HV-Cable and HV-Cable-Connector Systems using Transfer Impedance Z_T and Antenna Measurements
Contents

- Introduction
- Transfer Impedance (Z_T)
- Antenna Measurements
- Correlating measurements
- Analysis of HV-Connector
- Conclusion
Antenna Measurements

Field measurements

- Initial investigations
 - Conventional antenna measurement method and different approaches were used for field measurements
- Problems faced were
 - Variable influence of the connecting cables
 - Strong coupling was required for correlating with Z_T
- Modification in the setup as per requirements to correlate with Z_T

Use of stripline antenna to improve the sensitivity of coupling reception

Conventional antenna measurement setup

ESPI Test Rx
Amplifier
Attenuator
Coupler
Termination resistor

DUT directly connected to chamber wall (ground)

Ferrites used at the receiver cable

Initial investigations
Conventional antenna measurement method and different approaches were used for field measurements

Problems faced were
Variable influence of the connecting cables
Strong coupling was required for correlating with Z_T

Modification in the setup as per requirements to correlate with Z_T
Antenna Measurements

Measurement setup

- Modifications in test setup were made for development of better correlation
 - Amplifier may be used for increasing the dynamic range and sensitivity of the setup to measure coupling
 - Low frequency ferrites help to limit common-mode currents
 - Direct connection of the DUT into the metallic chamber wall helps to avoid influence of brackets and connecting cables
 - Some effects due to bending and shape variation

![Measurement setup diagram]

- Modifications in test setup were made for development of better correlation
 - Amplifier may be used for increasing the dynamic range and sensitivity of the setup to measure coupling
 - Low frequency ferrites help to limit common-mode currents
 - Direct connection of the DUT into the metallic chamber wall helps to avoid influence of brackets and connecting cables
 - Some effects due to bending and shape variation

Power ON Status: OK

ESPI Test receiver

Amplifier 100A400 100W CW 100kHz - 400MHz

Coupler

Termination Resistor

Attenuator

EMI Test Receiver

Inside chamber

Reference ground (Aluminum table)

Metallic Chamber wall (ground)

Anechoic-chamber walls (Ferrite tiles)

1m Rod-antenna (100kHz-50MHz)

DUTs:

- Unshielded cable
- Shielded-Cable
- Cable-Connector System

Tx-side

Rx-side

Both table and chamber ground connected together via metallic copper sheet
Measurements were done for different samples
- Unshielded cable was also measured as reference for finding Shielding effectiveness
- Similar to ZT measurement results, difference between both samples can be seen (Sample 1 has lower shielding than sample 2)
Contents

- Introduction
- Transfer Impedance (Z_T)
- Antenna Measurements
- Correlating measurements
- Analysis of HV-Connector
- Conclusion
Correlating measurements

Correlating using S_{21} (from Z_T) and S_{21} (from Antenna measurements)

- Correlation for HV-Cable only
 - For similar test conditions and addition of correct correlation factor, we see good correlation between both measurement results
 - Correlation factor depends on the DUT conditions (shape and height, etc), type of antenna and distance, etc

Addition of correction factor for antenna measurements gives similar results for $f > 1$ MHz
Correlating measurements

Correlating using S_{21} (from ZT) and S_{21} (from Antenna measurements)

- Correlation factor depends on the DUT conditions (shape and height, etc), antenna factors and distance, etc

Correlation for HV-Cable-Connector system (TYCO)
- For similar test conditions and addition of correct correlation factor, we see good correlation between both measurement results

Resonance difference is due to ($C_{\text{box-Gnd}}$) slight cable length difference and gap difference between connector box and ground plate
Contents

- Introduction
- Transfer Impedance (Z_T)
- Antenna Measurements
- Correlating measurements
- Analysis of HV-Connector
- Conclusion
Analysis of HV-Connector

Finding the critical EMI points using Z_T model

- Explanation of the Z_T for both HV cable and cable-connector system
- Connector has higher R_{contact} and extra Inductance causes no lowest Z_T point (No-dip)
- To make connector Z_T model: R_{CONTACT} and $L_{\text{CONNECTOR}}$ in $Z_{T,\text{Cable}}$ are added

Z_T Cable model:

$Z_{T,\text{Cable model}} = R_0 \frac{(1+j)d/\delta}{\sinh[(1+j)d/\delta]} + k_{\text{CABLE}} \sqrt{\omega} + e^{i\delta} + j\omega(L_{\text{HOLE}} - L_{\text{BRAID}}) + R_{\text{CONTACT}} + j\omega L_{\text{CONNECTOR}}$

Z_T Cable-Connector Model:

$Z_{T,\text{Cable-Connector}} = R_0 \frac{(1+j)d/\delta}{\sinh[(1+j)d/\delta]} + k_{\text{CONTACT}} \sqrt{\omega} + e^{i\delta} + j\omega(L_{\text{HOLE}} - L_{\text{BRAID}}) + R_{\text{CONTACT}} + j\omega L_{\text{CONNECTOR}}$

For example for sample 1 KOSTAL and 35 mm² Coroplast:

$L_{\text{HOLE}} = 3.65\text{nH} ; L_{\text{BRAID}} = 3.78\text{nH}; k_{\text{CABLE}} = 0.5e^{-7} ; R_0 = 3.3\text{mOhm}$

$L_{\text{CONNECTOR}} = 2.2\text{nH} ; R_{\text{CONTACT}} = 3.5\text{ mOhm} ; k_{\text{CONNECTOR}} = 50^*k_{\text{CABLE}}$

Sample 1: KOSTAL and 35mm² Coroplast cable

Sample 2: TYCO and 25mm² Coroplast cable
Comparison of different HV-Connectors

- Difference is at low-frequency
- Sample 1 has higher DC-resistance compared to Sample 2 connectors
- As there are more contact interfaces

Sample 1 has higher DC-resistance compared to Sample 2 connectors. As there are more contact interfaces.
Analysis of HV-Connector

Comparison of HV-Connector box with an Ideal (dummy) box

- To experimentally compare the shield performance of the HV-Cable-Connector system, we used
 - a dummy box (connecting cables)

- Observations
 - At low frequency, ideal connector has similar Z_T as that of cable
 - After ~1 MHz, additional inductances differentiates the connector-box from cable

![Diagram of HV-Cable, braided shield, and Ideal connector-box (dummy-box)](image)

![Graph showing comparison of Z_T values for different configurations.](image)
Contents

- Introduction
- Transfer Impedance (Z_T)
- Antenna Measurements
- Correlating measurements
- Analysis of HV-Connector
- Conclusion
Conclusion

Summary

- Investigations to do electromagnetic shield analysis of HV-Cable and HV-Cable-Connector systems has been presented
- Transfer Impedance measurements have been presented using Ground Plate Method (GPM)
- Antenna measurements have also been performed which were further used to find the shield effectiveness
- Comparison of Ideal (dummy) Connector-box with conventional HV-Connector System has been made to suggest connector design improvements

Benefits:
- The presented work serves as start-up for correlating the Z_T and Antenna measurements
- Correlation helps to simplify the measurements
- Identification of the critical EMI points suggests improvements in connector shield designs

Future tasks

- Correlation between Z_T and Antenna (EMI) measurements
 - Using intermediate measurement setup
 - Using Current and Voltage measurements
Acknowledgments

“The reported R+D work was carried out within the CATRENE project CA310 EM4EM (Electromagnetic Reliability and Electronic Systems for Electro Mobility). This particular research is supported by the BMBF (Bundesministerium fuer Bildung und Forschung) of the Federal Republic of Germany under grant 16 M3092 I”
Danke für Ihre Aufmerksamkeit!

Abid Mushtaq
abid.mushtaq@tu-dortmund.de